Fund Grant Application

Please read the “Grant Guidelines” at http://ieeechicago.org/science-kit-grants/ before completing this form.

Project Title:

STEM to Go: Circulating Science Kits

Library Name and Address:

Oak Lawn Public Library
9427 S. Raymond Ave. Oak Lawn, IL 60453

Contact information for all interaction with the IEEE-Chicago Section Fund Advisory Committee. This person will receive all email and correspondence from the IEEE-Chicago Section Fund and will be responsible for passing information to the project team.

Mary Donovan, Youth Services Outreach Librarian mdonovanys@olpl.org 708.422.4990 ext 412

Contact information for the person responsible for managing the project finances. This person will receive the grant payments

Kathy Szott, Business and Personnel Manager kszott@olpl.org 708.422.4990 ext 310
What is the proposed duration of the project in months? *It is expected that you will start upon the receipt of your initial grant check and that the duration will not exceed 12 months.*
The proposed duration of the project is 12 months.

Describe your existing science kit collection if you have one. (Up to 100 words)

We do not currently have a science kit collection.

Do you currently circulate science kits? [] YES [] NO

Describe the community you serve including demographics, median income, unemployment rate, etc. (Up to 200 words)

Oak Lawn is a Chicago suburb with a population of 56,690. Its median household income is $56,185. 10.8% of its residents live below poverty level. In July 2017, its unemployment rate was 4.8%. 89.9% of Oak Lawn residents are high school graduates, 26.0% are college graduates, and 6.1% are attending college. Close to 15% of residents are foreign-born. English is spoken by 72.0% of residents, Spanish by 12.5%, Arabic by 6.2% and Polish by 4.2%.

Oak Lawn is served by two elementary school districts, Oak Lawn-Hometown District 123 and Ridgeland District 122, and by Oak Lawn Community High School. In addition to the two middle schools and ten elementary schools in the districts, Oak Lawn Public Library also serves seven parochial schools. In District 123, 45% of the students are low-income and 13% are English learners. In District 122, 69% of the students are low-income and 31% are English learners. At OLCHS, 39% are low income and 5% are English learners.

The library strives to meet the needs of Oak Lawn’s newer residents, who are learning our language and culture, as well as the needs of our longtime families.

(Data from U.S. Census Bureau and Illinois Report Card)
How will your community benefit from the circulation of science kits? (Up to 100
Many of our young patrons do not have smartphones or computers. We hope that checking out STEM kits will help bridge the gap between their families and those who live in wealthier communities with fuller access to technology.

Children enjoy our STEM programs. We recently received a gift to buy tech items, with the stipulation that they are to be used only for library programming. Circulating STEM kits will enable children to extend our programs with further explorations at home.

Local teachers often lack science equipment. We hope they will be able to use our STEM kits in their classrooms.

Provide a summary of your project. (Up to 250 words) This summary should explain how the project fits into the grant guidelines of the IEEE-Chicago Fund, and what you plan to achieve through the successful completion of this project.

Since our Youth Services department serves children from birth through eighth grade, we are hoping to build 14 STEM kits focused on computer science, engineering and physics for children ages 3 – 14. Coding materials include Cubetto, Code & Go Robot Mouse kits and Ozobots. Architecture kits include Magna-tiles, Keva planks, and Knex Bridge kits. Electronics kits include Snap Circuits and a Little Bits Star Wars Inventor kit. Physics kits include a Force Flyers DIY Building Block Drone and kits on simple machines.

We also hope to include iPad Minis in the Ozobot and Little Bits Star Wars kits, since those robots are app-enabled via Bluetooth. An internet connection will allow children to learn coding with the robots.

Each kit will also include books and when available, DVDs relating to the subject, as well as a binder with additional resources and activities.

The kits will be catalogued and checked out for a three-week
period. They will be eligible for holds with an Oak Lawn Public Library card.
Provide a summary of your project.
(Continued)

We will launch the kits at an open house for families and teachers, and promote them at the monthly STEAM programs we offer in conjunction with the Museum of Science and Industry; at our other children’s programs; in our outreach at local schools; and in our newsletter, website and social media.

We hope this project will foster our young patrons’ interest and skills in STEM topics by providing them, and their teachers, with hands-on tools and technology.

Describe how you will measure your results. (Up to 100 words)

Circulation data will tell us how well the kits circulate, which ones are most popular, and how well the additional resources listed in the kit binders circulate. Each kit will also include a survey with sections for children, parents and teachers. Desk staff will be able to question patrons directly, and our outreach librarian will ask teachers about their experiences with the kits as well. All of these forms of feedback will enable us to see what tweaks should be made to the kits, and what STEM topics should be covered when we build additional kits.

Describe how you will assist other libraries in replicating your results. (Up to 100 words)

Our Youth Services staff are active in many professional associations, including the Children’s Librarians’ Association of the South Suburbs (CLASS), LACONI, the RAILS Tinker group, and ILA. Staff will be happy to report to their colleagues about the results of the project through presentations to these organizations, as well as posts to relevant association blogs and RAILS groups’ mailing lists. Staff is also willing to submit articles about the project to professional journals. In addition, the cataloging records for our
kits will be available to the 91 members of SWAN, our consortium.
Since the kits will be part of the circulating collection, Youth Services will be able to carve out collection development funds from the relevant STEM collection areas to build additional kits and replace missing or damaged parts. We are starting with technology and engineering-oriented kits because these seem to be the STEM areas that arouse the most interest from our patrons and because these subjects seem to circulate well in the grant reports on the project. But we hope to be able to expand not only within these areas, but beyond them into biology, ecology, astronomy and mathematics.

Name and Signature of Library Director:

James D. Deiters Jr. Send your completed application and estimating budget to: Michal Gawlik Grant Application Manager Science Kits for Public Libraries michalg@ieee.org
Anticipated Income

Estimated Expenses

<table>
<thead>
<tr>
<th>Funding Source Name</th>
<th>Amount to be paid from other Sources</th>
<th>Amount to be Paid from Chicago Fund</th>
<th>Amount to be Paid from Chicago Fund</th>
<th>Amount to be Paid from Chicago Fund</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEEE Chicago Fund Grant Request</td>
<td>Maximum of $2,000</td>
<td>Science Kit or Supporting Material</td>
<td>Science Kit or Supporting Material</td>
<td>Science Kit or Supporting Material</td>
</tr>
<tr>
<td>Oak Lawn Public Library</td>
<td>My First Coding Book (book), Quantity 2</td>
<td>$2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Baby Loves Coding! (book) $9

Learning Resources Code & Go
Robot Mouse Activity Set
$3
<table>
<thead>
<tr>
<th>Item Description</th>
<th>Quantity</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ozobot Evo 3-year Kit</td>
<td>1</td>
<td>$8</td>
</tr>
<tr>
<td>Kids Get Coding: Learn to Code Program (book)</td>
<td>1</td>
<td>$8</td>
</tr>
<tr>
<td>How to Code: A Step by Step Guide to Computer Coding (book)</td>
<td>1</td>
<td>$10</td>
</tr>
<tr>
<td>National Geographic Everything Robotics</td>
<td>2</td>
<td>$18</td>
</tr>
<tr>
<td>The Robot Book: Building 20 Electric Gizmos, Machines & Hacked Gadgets</td>
<td>1</td>
<td>$14</td>
</tr>
<tr>
<td>iPad mini 4</td>
<td>1</td>
<td>$400</td>
</tr>
<tr>
<td>iPad mini 4 3-year protection plan</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Armorex iPad mini 4 3-year protection plan</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Magna-Tiles Clear Cubes</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
48-piece DX set $7

How a House is Built (book) $8

Look at That Building: A First Book of Structures (book) $1

Magnets Push, Magnets Pull (book) $16
The Story of Buildings (book) $16

Skyscrapers: Investigate Feats of Engineering (book) $1

0

Knex Education Introduction to Structure: Bridges set $4

0

Bridges: Amazing Structures to Design, Build & Test (book) $1

1

Bridges & Tunnels: Investigate

Explore Simple Machines! (book) $9

The Science of Disney Imagineering: Levers & Pulleys (DVD) $2

0

Feats of Engineering Projects (book) $1

0

Knex Educ. Building to Simple Machines, Levers/Pulleys $3

4

Super Cool Science Experiments: Lever Pulleys (book) $1

4

Knex Educ: Intro to Machines, Gears Set $3

9
Using Pulleys and Gears (book) $18
<table>
<thead>
<tr>
<th>Product</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simple Machines: Forces in Action (book)</td>
<td>$9</td>
</tr>
<tr>
<td>The Kids' Book of Simple Machines: Cool Projects & Activities (book)</td>
<td>$1.5</td>
</tr>
<tr>
<td>Knex Educ. Building Kit: Intro to Simple Machines, Wheels, Axles, Incined Planes</td>
<td>$3.2</td>
</tr>
<tr>
<td>Making Machines with Wheels & Axles (books)</td>
<td>$8</td>
</tr>
<tr>
<td>Simple Machines (book)</td>
<td>$12</td>
</tr>
<tr>
<td>Snap Circuit Beginner Electronic Discovery Kit</td>
<td>$1.7</td>
</tr>
</tbody>
</table>
$7 Oscar and the Bird: A Book About Electricity (book)
<table>
<thead>
<tr>
<th>Item</th>
<th>Quantity</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Switch On, Switch Off (book)</td>
<td>8</td>
<td>$6</td>
</tr>
<tr>
<td>Snap Circuits Jr SC100 Electronics Discovery Kit</td>
<td></td>
<td>$1</td>
</tr>
<tr>
<td>Electronics for Kids (book), Quantity 2</td>
<td>2</td>
<td>$34</td>
</tr>
<tr>
<td>Making a Circuit (book)</td>
<td></td>
<td>$7</td>
</tr>
<tr>
<td>Little Bits Star Wars Droid Inventor Kit</td>
<td>5</td>
<td>$10</td>
</tr>
<tr>
<td>iPad mini 4</td>
<td>0</td>
<td>$400</td>
</tr>
<tr>
<td>iPad mini 4 3-year protection plan</td>
<td></td>
<td>$83</td>
</tr>
<tr>
<td>Armorex iPad mini 4 case</td>
<td></td>
<td>$17</td>
</tr>
<tr>
<td>How Circuits Work (book)</td>
<td></td>
<td>$25</td>
</tr>
<tr>
<td>Cool Battery & Electricity Projects (book)</td>
<td>2</td>
<td>$2</td>
</tr>
<tr>
<td>Tell Me Why: How Things Work Electricity & Electric Safety (DVD)</td>
<td>5</td>
<td>$2</td>
</tr>
</tbody>
</table>
Science of Disney Imagineering: Elect (DVD)
$3

Mighty Mars Rover (book) $11
Force Flyers DIY Building Block Drone
$50

Civilian Drones (book) $26

Flying Robots (book) $12

Building Aircraft and Spacecraft: Aerospace $2

Latching storage bins, Quantity 14 $63 $63

Total of Estimated Expenses to be paid by the Chicago Fund $1,940

Total Funding $2,561 Total Estimated Project Expenses $2,561